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Geometrical derivation of a new ground state formula for the
n-electron Friedel resonance model
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Abstract. The n-electron ground state of the Friedel resonance model can be written as a single Slater
determinant of n s-electrons plus one d-electron-s-hole companion. This new formula is derived geometri-
cally in the Hilbert space. The derivation uses the fact that a n-electron Slater determinant, built from N
band states, corresponds to a n-dimensional subspace in the N-dimensional Hilbert space.

PACS. 71.10.-w Theories and models of many electron systems – 71.55.-i Impurity and defect levels

Recently the author found by numerical variation [1] a
new formula for the n-electron ground state of the Friedel
Hamiltonian [2]. The Friedel Hamiltonian HFr for an s-
band with N states and a d resonance has the form:

HFr =
N∑
ν=1

ενc∗νcν +Edd
∗d+

N∑
ν=1

Vsd(ν)[d∗cν + c∗νd] (1)

where the creation operators c∗ν describe theN band states
with the band energy εν and Ed is the energy of the d∗

state. (In the following I denote a single electron state
by its creation operator and the corresponding vector in
Hilbert space by the corresponding bold symbol).

The traditional single electron solutions b∗i of the
Friedel Hamiltonian can be written in the form

b∗i = βid
∗ +

N∑
ν=1

βiνc
∗
ν (2)

βi = Ai

βiν = Ai
Vν

(Ei − εn)

Ai =
1√

1 +
∑N
ν=1

V 2
ν

(Ei−εν)2

·

The energies Ei are the (N + 1) eigen energies of the
states b∗i and given by the self consistent relation

Ei = Ed +
N∑
ν=1

|Vν |
2

Ei − εν
· (3)

The (N + 1) solutions b∗i of the Friedel Hamiltonian
span a (N + 1) dimensional Hilbert space. The new basis
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vectors bi are obtained from the N basis vectors cν plus
the d state by a rotation. The n-electron ground state is
represented by the product of the creation operators of
the n lowest states (i.e. states with the lowest energies)

Ψ0 =
n∏
i=1

b∗iΦ0. (4)

Ψ0 is a Slater state since it can be written as a single Slater
determinant.

The new ground state formula for n electrons which I
found numerically can be written in the form of equation
(5)

ΨFr = [Aa∗0 +Bd∗]
n−1∏
i=1

a∗iΦ0. (5)

Here Φ0 is the vacuum state and a∗0 is localized state which
is built from the states of the s-band

a∗0 =
N∑
ν=1

α0
νcν . (6)

The a∗i in equation (5) are part of a new orthonormal
basis (a∗0, a

∗
1, ..., a

∗
N−1) for the s-band. The a∗i (1≤ i ≤

N − 1) can be chosen so that their (N − 1) sub-matrix of
the s-band Hamiltonian H0 =

∑
ενc∗νcν is diagonal, i.e.

〈aiΦ0 |H0| ajΦ0〉 ∝ δij for 1 ≤ i, j ≤ N − 1. The states a∗i
are uniquely determined from the state a∗0. ΨFr is a Slater
state as well, consisting of (n− 1) single s-electron states
a∗i and a mixed s-d-state (Aa∗0 +Bd∗).

In this paper I want to show that the theoretical proof
of relation (5) is relatively straight forward if one uses a
geometrical representation of the n-electron Slater state.

Let us assume that we have a Hamiltonian given in
the basis of N single electron states c∗ν . This basis defines



234 The European Physical Journal B

an N -dimensional Hilbert space with the unit vectors cν .
In this Hilbert space we consider n single electron states

e∗1, ...e
∗
n with e∗i =

∑N
ν=1 γiνc

∗
ν . We compose with these

states an n-electron Slater state either by means of a Slater
determinant or as a product of the n creation operators
Ψn = e∗n...e

∗
1Φ0. In Hilbert space the n vectors ei repre-

sent a basis for an n-dimensional subspace. We postulate:
The n-dimensional subspace is equivalent to the n-electron
Slater state. The weight or amplitude is equal to the vol-
ume of the n-dimensional parallelepiped which is defined
by the vectors e1, ...en. This means that a 1-dimensional
electron state is equivalent to a 1-dimensional subspace of
the Hilbert space, i.e., a straight line defined by the single
vector e1. (The usual definition of a single electron state as
vector of length 1 in Hilbert space cannot be generalized
to an n-electron state).

As an example I consider the following two 2-electron
Slater states Ψ12 and Ψ ′12. The compositions of the 2-
electron states are
a) Ψ12 is built from the two single electron states c∗1 and
c∗2, i.e., Ψ12 = c∗2c

∗
1Φ0.

b) Ψ ′12is built from the two single electron states 1√
2
(c∗1 +

c∗2) and 1√
2
(c∗1−c

∗
2), i.e., Ψ ′12 = 1√

2
(c∗1 +c∗2) 1√

2
(c∗1−c

∗
2)Φ0.

The two states Ψ12 and Ψ ′12 are identical as a simple
multiplication shows. But Ψ12 and Ψ ′12 represent differ-
ent parallelepipeds (squares) in the c1-c2 plane. However,
the two vectors [c2, c1] define the same plane as the two

vectors
[

1√
2
(c1 + c2), 1√

2
(c1 − c2)

]
. Any rotation of the

two states c∗1 and c∗2 in this plane leaves the 2-electron
Slater state unchanged. Therefore we confirm the postu-
late that Ψ12 is equivalent to the 2-dimensional subspace
of the Hilbert space which is spanned by c1, c2 and the
2-dimensional volume of the parallelepiped (c1, c2) gives
the weight (amplitude) of this state.

This representation of the n-electron wave function
emphasizes the fact that e∗n...e

∗
1Φ0 is just one representa-

tion of the state Ψn. Any other sub-basis of this subspace
represents the same state. With this interpretation of an
n-electron Slater state one can easily construct the new
ground state ΨFr of Friedel Hamiltonian. The general idea
is the following: The traditional n-electron ground state Ψ0

in equation (4) spans an n-dimensional subspace S1 with
the sub-basis (b1, b2, ..., bn). By means of a rotation we
construct a new sub-basis of S1 which consists of (n− 1)
s-states a1, ...,an−1 and a mixed s-d-state (Aa0 + Bd).
This yields the state ΨFr which is identical with Ψ0. This
procedure is now described in some detail.

The (N+1) solutions b∗i (Eq. (2)) of the Friedel Hamil-
tonian span a (N + 1) dimensional Hilbert space. The n-
electron Slater state Ψ0 =

∏n
i=1 b

∗
iΦ0 is equivalent to the

n dimensional subspace S1.
In the new basis b∗i the state d∗ is given by

d∗ =
N+1∑
i=1

Aib
∗
i .

Part of the vector d lies in the subspace S1. This part is
denoted as d′1 and the rest as d′2. We normalize these two

Fig. 1. The basis vectors c1, ..., cN ,d span the (N + 1) di-
mensional Hilbert space. The same Hilbert space is spanned
by the eigenvectors of the Friedel Hamiltonian b1, ...,bN+1.
The n-dimensional subspace S1 = S(b1, ...,bn) is equivalent
to S(a1, ..., an−1,d1) while the orthogonal (N + 1 − n) di-
mensional subspace S2 = S(bn+1, ...,bN+1) is equivalent to
S(d2,an, ..., aN−1). Furthermore the 2-dimensional subspace
S(d1,d2) is equivalent to S(d,a0). The shaded area between
two columns of basis vectors indicates identical subspaces. As
a consequence the corresponding multi-dimensional electron
states are identical.

vectors d1 = d′1/ |d
′
1| and d2 = d′2/ |d

′
2|. The vectors d and

d1 form an angle γ with cosγ =
√∑n

i=1 A
2
i . Furthermore

we have

d = d1 cos γ + d2 sin γ.

Any vector in the subspace S1 which is orthogonal to d1

is also orthogonal to d, i.e., it is composed of only the
s-band states c∗ν .

Now we can define the vector

a0 = −d1 sin γ + d2 cos γ.

This vector a0 is orthogonal to d and consists therefore
only of s-states vectors cν . For d1 one obtains

d1 = − sinγa0 + cos γd. (7)

Unfortunately it is not possible to present the (N + 1)
dimensional Hilbert space and its n-dimensional subspace
graphically. However, to give some graphical assistance,
the original basis vectors (c1, ..., cN ,d) as well as the ba-
sis vectors (b, ...,bN+1) are shown in Figure 1 as linear
arrays. They span the same Hilbert space and this is in-
dicated by the shaded area between them.

All vectors in the subspace S1 which are perpendic-
ular to d1 are also perpendicular to d. I choose now d1
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as one of the basis vectors in the S1 subspace. The other
(n−1) basis states of S1 are denoted as a∗i (0 < i ≤ n−1).
They are orthogonal to d∗1 and to each other (and can be
constructed from the states b∗j ). Together with d1 they
define the n-dimensional subspace S1. These states a∗i are
automatically orthogonal to d∗ , i.e., they are only com-
posed of s-band states c∗ν . A particular useful choice of the
states a∗i in the subspace S1 is the one in which the s-band

Hamiltonian H0 =
∑N
ν=1 ενc∗νcν has only diagonal matrix

elements. This can be always achieved by a rotation in the
(n− 1) dimensional subspace, i.e., that part of S1 that is
orthogonal to d1.

In Figure 1 the third array of the new basis vectors
(a1, ...,an−1,d1) is shown. Since they span the same sub-
space as (b1,...,bn) the two sets of basis vectors is also
connected by a shaded area. The other vectors will be
discussed below.

In the second part of the proof it must be shown that
one can complement the states a∗i to a total of (N − 1)
states which form (together with a∗0) a full basis for the
s-band and that their (N − 1) sub-matrix of the s-band

Hamiltonian H0 =
∑N
ν=1 ενnν is diagonal. For that pur-

pose we consider the (N − n + 1) subspace S2 which is
spanned by the vectors bn+1, ...,bN+1. One basis vector
of S2 has already been defined and discussed above, the
vector d2. The remaining (N−n) dimensional subspace is
orthogonal to S1 and to d2 and is therefore also orthogonal
to d (and a0). One can construct (N − n) ortho-normal
basis vectors an, ...,aN−1 (which consist only of s-states).
These vectors are automatically orthogonal to d. As be-
fore in S 1 the sub-basis a∗i (n ≤ i ≤ N−1) can be rotated
so that the (N −n) sub-matrix of the s-band Hamiltonian
H0 is diagonal.

The basis vectors an, ...aN−1 are orthogonal to a1,
...an−1. Furthermore we defined the ai so that the s-band
Hamiltonian H0 is diagonal in each subspace. It is easy to
show that matrix elements of H0 between ak in S1 and al
in S2 vanish as well. (One expresses ak and al in terms of
bj).

Now we have (N+1) basis vectors, consisting of a1, ...,
aN−1 and d1,d2, where the vectors ak are all orthogonal
to d and the (N − 1) dimensional sub-matrix of H0 is
diagonal in this basis. The two basis vectors d1,d2 can

be replaced by a0 and d. In Figure 1 the basis vectors
b1, ...,bN+1 are drawn as a linear array. The first n vectors
span the subspace S1 and the remaining (N − n+ 1) span
the subspace S2. The same subspaces can be constructed
by means of a1, ...,an−1,d1 and d2,an, ...,aN−1, i.e.:

S(b1, ...bn) = S(a1, ...,an−1,d1) = S1

S (bn+1, ...,bN+1) = S (d2,an, ...aN−1) = S2 (8)

S(a0,d) = S(d1,d2).

With these conclusions we have proven that the state
ΨFr in equation (5) is the n-electron ground state of the
Friedel Hamiltonian, that the states (a∗1, ..., a

∗
N−1) form

(together with a∗0) a new basis, that their sub-matrix of
the s-band Hamiltonian is diagonal.

It is now easy to determine the exact form of the state
a∗.0 from the above conditions. One obtains

a∗0 =
1

sin γ cos γ

N∑
ν=1

c∗ν

×

[
n∑
i=1

βiβiν sin2 γ −
N+1∑
i=n+1

βiβiν cos2 γ

]
(9)

where the coefficients βi, βiν are given in equation (2). I
compared these theoretical coefficients of the state a∗0 with
the result of the numerical variation. They agree perfectly.
However, the present result goes beyond the numerical
result because it demonstrates that one can also express
excited states in the form of equation (5).
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